multifeeds
abril 30, 2018
Nuevo Calculo de Distancia al 2do LNB
En este Blog se ha tratado el tema del calculo de caronas o multifeeds en diversas oportunidades. Por ejemplo, en los siguientes:
Sobre las Caronas
caronas-o-multifeeds
rendimiento-de-caronas
Calculo de distancia al 2do lnb
calcular-la-distancia-al-segundo-lnb
calculo-rapido-de-caronas
otro-calculo-de-caronas
En esta ocacion, Presento un nuevo calculo de caronas o de la distancia al segundo lnb, tomado del análisis de las formulas que suelen emplear los programas de calculo que vemos circular por Internet y siempre nos preguntamos como hacen para obtener el resultado.
Para obtener el dato de los ángulos de elevación y azimuth se emplea dishpointer, como una herramienta de resultados rápidos, pero recordando que tiene su margen de error.
Los que prefieren calcularlo "a mano", tienen las instrucciones en este blog mediante la lectura del siguiente articulo calculo-de-azimuth-y-elevación-2 y los que prefieren usar una tabla de calculo pueden seguir las instrucciones de los artículos de otro-calculo-de-azimuth-y-elevación o este otro articulo gráfico-para-calcular-azimuth-y-elevación entre otros artículos sobre el tema.
Referencias:
D: diametro del plato
H: profundidad mayor del plato
F: foco del plato parabolico
M,N variables de calculo auxiliar
T1: tangente del angulo alfa
T2: tangente del angulo beta
alfa: angulo de diferencia entre el sat central y el de carona en azimuth
beta: angulo de diferencia entre el sat central y el de carona en elevacion
ST: separacion entre LNBs, centro a centro
Formulas a Aplicar:
F = (D * D) / (16 * H)
M = (H/2) + ((D * D) / (8 * H))
N = M - F
T1 = tan(alfa)
T2 = tan(beta)
S1 = N * T1
S2 = N * T2
ST = SQRT( (S1 * S1) + (S2 * S2))
SQRT = raiz cuadrada de un numero
tan = tangente de un angulo
Veamos un ejemplo practico:
Antena de 180 cm de diametro, 30 cm de profuncidad
separacion entre el satelite principal y secundario (alfa)
de 13 grados reales en azimuth y de 1 grado real (beta) en elevacion.
1. calculamos el foco del plato
F = (D * D) / (16 * H)
F = (180 * 180) / (16 * 30)
F = 32400 / 480
F = 67.5 cm
2. calculamos M
M = (H/2) + ((D * D) / (8 * H))
M = (30/2) + ((180 * 180) / (8 * 30))
M = 15 + (32400 / 240)
M = 15 + 135
M = 150
3. calculamos N
N = M - F
N = 150 - 67.5
N = 82.5
4. calculamos T1
el angulo alfa lo obtenemos de dishpointer basados en
nuestra posicion geografica y la posicion de azimuth
de los dos satelites a considerar.
sencillamente restamos un angulo del otro y obtenemos
la diferencia.
T1 = tan(alfa)
T1 = tan(13)
T1 = 0.230868
5. calculamos T2
el angulo beta lo obtenemos de dishpointer basados en
nuestra posicion geografica y la posicion de elevacion
de los dos satelites a considerar.
sencillamente restamos un angulo del otro y obtenemos
la diferencia.
T2 = tan(beta)
T2 = tan(1)
T2 = 0.017455
6. calculamos S1
S1 = N * T1
S1 = 82.5 * 0.230868
S1 = 19.04 cm
7. calculamos S2
S2 = N * T2
S2 = 82.5 * 0.017455
S2 = 1.44 cm
8. calculamos la distancia final entre LNBs
mediante el teorema de pitagoras.
ST = SQRT( (S1 * S1) + (S2 * S2))
ST = SQRT( (19.04 * 19.04) + (1.44 * 1.44))
ST = SQRT( 362.52 + 2.08)
ST = SQRT( 364.60)
ST = 19.095 cm
Así obtenemos la separación teórica entre los LNB, de 19 cm entre centro y centro de cada uno de ellos. Distancia que nos puede orientar donde colocar el segundo lnb para comenzar la búsqueda, dado que los cálculos de dishpointer u otras paginas de calculo generalmente se refieren a la tierra como un esferoide perfecto, cuando no lo es, y por eso son aproximados, con mayor o menor presicion según la ubicación geográfica de nuestra estación.
Fuente: ftapinamar.blogspot.com